Asphalt Emulsions 101

Chris Lubbers
Technical Sales and Marketing Mgr
Kraton Polymers, LLC

38th Annual RMACES
Denver, CO
February 24, 2011
Introduction
Asphalt is a *thermoplastic* material that softens as it is heated and hardens when cooled.
Why Heat Asphalt? So It Can Be:

• Pumped and transported
• Blended with and coat aggregate
• Remain workable during
 • Transport, laydown, and compaction

Other Ways to Make Asphalt Workable:
Asphalt Emulsions – A History

• First developed in the early 1900s
• Early use in spray applications + dust palliatives
• Growth use relatively slow:
 • Limited by the type of available emulsions
 • General lack of knowledge
• Steady rise in volume since the 1970’s
Why Use Asphalt Emulsions?

- No petroleum solvent required to liquefy
- Little or no hydrocarbon emissions
- In most cases, used with no additional heat
- The ability to coat damp aggregate
- Can use cold materials at remote sites
- Wide variety of emulsion types available today
Asphalt Emulsions in Pavement Preservation (PP)

• Strategy of managing pavement condition to:
 • Maximize pavement lifespan at minimal cost

• Applies to all types of roads
 • Low volume local roads to heavy interstates

• Achieved by careful planning and selection
 • Right protective treatment (application)
Pavement Life Cycle Theory

Condition (PCI)

Maintenance
~$ 1.00/SY

Rehabilitation
>$10.00/SY

Reconstruction
>$$$$

70/60?

Time
Emulsion Chemistry
Emulsion Chemistry

• Emulsions are mixtures of
 • Two or more materials
 • Normally do not mix or blend together
 • Created via mechanical + chemical processes

• Some common examples
 • Mayonnaise, latex paint, ice cream
Asphalt Emulsions - Composition

• Three basic ingredients
 • Asphalt
 • Water
 • Emulsifying agent

• May contain other additives
 • Polymers
Basic Emulsion Ingredients – Asphalt

- Asphalt cement is basic ingredient
- Up to 50-75% of finished emulsion
- Hardness of base asphalt cement varies
 - Emulsion base ranges from 40–250 dmm PEN
 - No exact correlation bwn. asphalt props. and emulsification
- Climate may require harder or softer base
Basic Emulsion Ingredients – Water

• Second basic ingredient in an emulsion is water
 • Contribution cannot be minimized
 • Water may contain minerals or other matter
 • Can affect the production of stable emulsions
 • Water considered suitable for drinking,
 • Might NOT be suitable for emulsion production
Basic Emulsion Ingredients – Emulsifying Agents

• Surfactants
 • Adsorbed at interface between liquids and solid
 • Concentrate at interface based on their structure
 • Hydrophilic head towards more polar phase (H₂O)
 • Lipophilic tail towards less polar phase (asphalt)
 • Surfactant molecule or ion acts as bridge bwn. phases
Asphalt Emulsions – Emulsifying Agents

• Asphalt emulsions are classified into three categories
 • Anionic (-)
 • Cationic (+)
 • Nonionic (neutral)

Based on electrical charges surrounding asphalt particles
Emulsion Production
Producing the Emulsion - Emulsifying Equipment

- Basic equipment
 - High-speed, high-shear mechanical device
 - Usually colloid mill to shear asphalt into droplets

- Also required
 - Emulsifier solution tank
 - Heated asphalt tank
Producing the Emulsion – Emulsification Process

- Asphalt particle size vital factor for stable emulsion

Smaller than:

- 0.001 millimeter (1 micron) 20 percent
- 0.001–0.005 millimeter (1–5 microns) 57 percent
- 0.005–0.010 millimeter (5–10 microns) 23 percent
Emulsion Classification
Asphalt Emulsions – Classification by Set Rate

• How quickly do asphalt droplets coalesce?

• Two letter codes used to simplify + standardize
 • RS – Rapid Setting
 • MS – Medium Setting
 • SS – Slow Setting
 • QS – Quick Setting

• Relative terms only
Asphalt Emulsions - Classification by Set Rate

• RS Emulsions
 • Little/no ability to mix with aggregate

• MS Emulsions
 • Can mix with coarse but not fine aggregate

• SS and QS Emulsions
 • Can mix with fine aggregate
Sub-Classifications - Typical Applications

- **RS**
 - Rapid Setting
 - Chip Seals

- **MS**
 - Medium Setting
 - Plant Mixing
 - In-place Recycling

- **SS**
 - Slow Setting
 - Cold Mixes
 - Tack Coats

- **QS**
 - Quick Setting
 - Slurry Seals
 - Micro Surfacing
Asphalt Emulsions – Full Classification

• Identified by numbers and letters related to:
 • Particle charge (prefix)
 • Set rate (prefix)
 • Viscosity of liquid emulsion (suffix)
 • Hardness of base asphalt cements (suffix)
Hardness + Modification Suffixes

No suffix

- 100-200 pen high
- 40-90 pen (hard)
- > 200 pen (soft)

L
- Latex-modified

P
- Polymer-modified

R
- Recycling agent-mod.
Asphalt Emulsion Nomenclature

CRS-2P

CATIONIC

RAPID SETTING

POLYMER MODIFIED

HIGH VISCOSITY
<table>
<thead>
<tr>
<th>Asphalt Emulsion (ASTM D 977, AASHTO M 140)</th>
<th>Cationic Emulsion (ASTM D 2397, AASHTO M 208)</th>
<th>Polymer-Modified Cationic Emulsion (AASHTO M 316)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-1</td>
<td>CRS-1</td>
<td>CRS-2P, CRS-2L</td>
</tr>
<tr>
<td>RS-2</td>
<td>CRS-2</td>
<td></td>
</tr>
<tr>
<td>HFRS-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS-2</td>
<td>CMS-2</td>
<td></td>
</tr>
<tr>
<td>MS-2h</td>
<td>CMS-2h</td>
<td></td>
</tr>
<tr>
<td>HFMS-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFMS-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFMS-2h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFMS-2s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS-1</td>
<td>CSS-1</td>
<td></td>
</tr>
<tr>
<td>SS-1h</td>
<td>CSS-1h</td>
<td></td>
</tr>
<tr>
<td>QS-1h</td>
<td>CQS-1h</td>
<td></td>
</tr>
</tbody>
</table>
Asphalt Emulsions – Micro Surfacing Classification

• Micro surfacing often specifies CSS-1hP emulsion

• Meets ASTM and AASHTO CSS-1h requirements
 • With the exception of the cement mixing test

• Min. polymer content of 3% solids on asphalt
 • Enhances high temperature performance
 • Permits application in multiple stone depths:
Emulsion Application
Asphalt Emulsions – Breaking and Curing

• Breaking/Drying
 • Separation and evaporation of water

• Curing
 • Return of residual asphalt properties
 • Adhesion
 • Durability
Emulsions – Breaking

• Breaking
 • H_2O separating from asphalt phase + evaporating

• Emulsions formulated to break according to app.

• Two breaking mechanisms
 • Chemical
Emulsions - Breaking

- Breaking
 - For SS grades = mechanism mainly evaporation
 - For MS + RS grades = mechanism mainly chemical
Emulsions - Curing

- *Curing* – Process whereby mechanical properties of the asphalt return after application
 - Water must completely evaporate
 - Asphalt particles must coalesce and bond to intended surface
 - Water fully removed by evaporation + absorption