Understanding Testing Variability

Rocky Mountain Asphalt Conference & Equipment Show

February 19-21, 2014
Denver, Colorado

Jon Epps
Understanding Testing Variability

Rocky Mountain Asphalt Conference & Equipment Show

February 19-21, 2014
Denver, Colorado

Jon Epps
Outline

- Introduction
- Variability
- Sampling Variability
- Testing Variability
- Materials/Construction Variability
- Percent within Limit
- Typical Variability
- Summary
Why Understand Testing Variability

- Provide quality product to our customer
- Remain in business
- Establish specification limits
- Predict pay factors
“Quality”

- Customer
- Engineer
Quality – Customer

- Product Meets or Exceeds Customer’s Expectation
 - Short Term
 - Long Term (Durability)
- Appearance
Quality – Pavements

- Looks Good
- Rides Smoothly
- No Splash and Spray
- Quiet
- Provide Friction
Quality – Engineer

- Meets or Exceeds Expectation (Performance)
 - Short Term
 - Long Term
- Meets or Exceeds Specifications
- Uniform Product
Quality-Pavements (Engineer)

- Meets or Exceeds Specification
- Satisfies Customer
- Short & Long Term Performance
 - Rutting
 - Bleeding
 - Patching
 - Raveling
 - Cracking
Quality Pavements

- Mixture/Materials Designs
- Thickness of Pavement
- Specifications
- Construction
Who Is Responsible for Quality?

- Owner (Public Agency)
- Contractor/Material Supplier
- All Levels of the Organization
Role of Specifications

- Contractors/Material Supplier (Control Quality)
- Owner (Public Agencies) (Specify Quality)
Referee

Contractor/Material Supplier
- Process Control
- Quality Control

Owner (Public Agency)
- Quality Assurance

Independent Assurance
Types of Specifications

- Proprietary Method
- QC/QA
- End Result

- Performance Related
- Performance Based
- Statistically Based
- Warranty/Guarantee
Specifications – Quality Control/Quality Assurance

- Lot/Sublot
- Process Control/Quality Control
- Quality Assurance
- Acceptance
- Measurement
- Pay Adjustment
- Certification/Accreditation
Outline

- Introduction
- Variability
 - Sampling Variability
 - Testing Variability
 - Materials/Construction Variability
 - Percent within Limit
 - Typical Variability
Statistical Representation of Variability

- Mean – \(\bar{x} \)
- Standard Deviation – \(s \)
- Coefficient of Variation – \(\frac{s}{\bar{x}} \)
QC/QA and Variability

Variability = variability + variability + variability

(QC/QA) (sampling) (test method) (mat./const.)

\[S^2_{QC/QA} = S^2_s + S^2_t + S^2_{m/c} \]
Sources of Variability

- Sampling – random variation in sampling methods or procedures
- Testing – random variation in testing performance and equipment

Sampling + testing variability = about 50% of the variation in test results

- Material – random natural variation
- Construction – variation inherent in production and construction methods
Effect of Number of Samples and Associated Risk

<table>
<thead>
<tr>
<th>Number of Samples (n)</th>
<th>Contractor’s Risk (α)</th>
<th>Owner’s Risk (β)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0%</td>
<td>84%</td>
</tr>
<tr>
<td>1</td>
<td>5%</td>
<td>50%</td>
</tr>
<tr>
<td>4</td>
<td>0%</td>
<td>16%</td>
</tr>
<tr>
<td>4</td>
<td>5%</td>
<td>2.5%</td>
</tr>
</tbody>
</table>
Reported Test Result

- Single sample/size test result
- Single sample/multiple test result
- Multiple samples/multiple test result

\[S_n = \frac{s}{\sqrt{n}} \]
Sample Size & Frequency

- Increase Sample Size & Increase Frequency (#)
 - Large Nom Max Agg Size
 - Large Mixture Variability
 - High Reliability
 - Large Effect on Performance
 - New Materials or Production
 - Non-Compliance w/Specifications
Number and Size of Samples

ASTM Standards

- **D3665** – Random Sampling of Construction Materials
- **E105** – Probability Sampling of Materials
- **E122** – Choice of Sample Size to Estimate the Average Quality of a Lot or Process
- **E141** – Acceptance of Evidence
Lot/Sublots/ #Tests

- **Lot**
 - Amount of material being evaluated for payment purposes
 - Commonly defined by length of roadway or material mass

- **Sublots/Lot**
 - Sampling divisions within given lot
 - Commonly 4 or 5 with 1 test/sublot

- **Tests/Sublot**
 - Number of material tests or measurements per lot or sublot
 - Typically 1 to 5 depending on lot and sublot
Random Sampling

With simple random Sampling, all samples could end up in one section of a Roadway lot.
With simple random Sampling, All samples could end Up in one section of a Roadway lot
Random Sampling

With simple random Sampling, All samples could end Up in one section of a Roadway lot.
With simple random Sampling, All samples could end Up in one section of a Roadway lot
Random Sampling

With simple random Sampling, All samples could end Up in one section of a Roadway lot
Stratified Random Sampling
Point of Sampling

- **Asphalt**
 - Plant Tank or Middle 1/3 of Truck Load
 - Bleed off & Discard Prior to Sampling
 - Sample & Seal
Point of Sampling

- **Asphalt Content**
 - Loose Plant, Truck, Mat (entire lift), Windrow, or Paver (auger) Samples, Cores

- **Aggregate Gradation**
 - Coldfeeds or hot bins
 - Extracted from HMA (loose samples or cores)

- **Lab Compacted Volumetrics**
 - Loose Plant, Truck, Mat (entire lift),
Cold Feed “Belt Cuts” are taken from the collector belt enroute to the dryer drum.
Truck
Point of Sampling

- In-Place Density
 - Compacted Mat
- Thickness
 - Compacted Mat
- Smoothness
 - Longitudinal Profile or Index
Sample Splitting

Coarse @ 3.79%ac Fine @ 5.21%ac
Outline

- Introduction
- Variability
- Sampling Variability
- **Testing Variability**
- Materials/Construction Variability
- Percent within Limit
- Typical Variability
Test or Measurement Method

- Must be suitable for Field Applications
 - Inexpensive, easy set-up (mobile), relative insensitive to environment, easy to analyze data
- Understand Associated Variability!
- Specification Tolerances = \(f(\text{Variability}) \)
Mix Design Volumetric

- Superpave
 - $G_{mi, d, m}$, AV, VMA, VFA, DP

- Marshall
 - AV, VMA, VFA
Mixture Volumetrics

- All Specified Volumetric Properties Calculated from Measured Material Properties (AASHTO or ASTM Test Methods):
 - Asphalt Content (AC)
 - Asphalt Cement Specific Gravity (G_b)
 - Combined Aggregate Specific Gravity (G_{sb})
 - Bulk Specific Gravity of Compacted Mixture (G_{mb})
 - Theoretical Maximum Specific Gravity
Properties Calculated Mixture Properties are Function of

<table>
<thead>
<tr>
<th>Calculated Property</th>
<th>Variables the Property is a Function of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gsb</td>
<td>P, Gsb</td>
</tr>
<tr>
<td>Gse</td>
<td>Pmm, Pb, Gmm, Gb</td>
</tr>
<tr>
<td>Gmm</td>
<td>Pmm, Ps, Gse, Pb</td>
</tr>
<tr>
<td>Pba</td>
<td>Gb, Gse, Gsb</td>
</tr>
<tr>
<td>Pbe</td>
<td>Pb, Pba, Ps</td>
</tr>
<tr>
<td>AV</td>
<td>Gmb, Gmm</td>
</tr>
<tr>
<td>VMA</td>
<td>Gmb, Gsb, Ps</td>
</tr>
<tr>
<td>VFA</td>
<td>VMA, AV</td>
</tr>
<tr>
<td>%Gmm_i</td>
<td>Gmb, Gmm</td>
</tr>
<tr>
<td>%Gmm_m</td>
<td>Gmb, Gmm</td>
</tr>
<tr>
<td>DP</td>
<td>p0.075, Pbe</td>
</tr>
</tbody>
</table>
Question?

What are the combined effects of variability in material and mixture property measurements on calculated volumetric properties and optimum asphalt content selection?

Answer

Perform an analysis to find out
Analysis

- Show the effect of what is considered acceptable variability in G_b, G_{sb}, G_{mb}, G_{mm} measurements on mixture volumetrics for both within and between laboratory conditions

- 19mm Superpave mix design data
- ASTM single-operator and multilaboratory precision
- Monte Carlo Simulations
- Generate range of volumetric properties due to test method variability
Test Method Precision and

- Precision Statements Account for Inherent Test Method Variability (uncontrollable random error)
- Single-operator, within lab, repeatability
- Multilaboratory, between lab, reproducibility
- One-Sigma Limits (standard deviation, σ, 1S)
Precision and Bias

- Precise
- Not Bias

- Not Precise
- Not Bias

- Precise, Biased

Texas A&M Transportation Institute

Wednesday, March 5, 14
Precision and Bias

Precise Not Bias

Low Variability

Not Precise Not Bias

High Variability

Precision Statements are Based on Interlaboratory Studies
Within Laboratory Precision
(Single Operator Precision)

<table>
<thead>
<tr>
<th>Designations</th>
<th>Description</th>
<th>Single Operator Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AASHTO</td>
</tr>
<tr>
<td>Standard Deviation (1S)</td>
<td></td>
<td>Acceptable Range of Two Results (D2S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AASHTO</td>
</tr>
<tr>
<td>T228</td>
<td>Asphalt Cement Specific Gravity</td>
<td>0.0008</td>
</tr>
<tr>
<td>T85</td>
<td>Coarse Aggregate Specific Gravity</td>
<td>0.009</td>
</tr>
<tr>
<td>T84</td>
<td>Fine Aggregate Specific Gravity</td>
<td>0.011</td>
</tr>
<tr>
<td>T166</td>
<td>Bulk Specific Gravity of Compacted Bituminous Specimens</td>
<td>*</td>
</tr>
<tr>
<td>T209</td>
<td>Theoretical Maximum Specific Gravity of Bituminous Mixture</td>
<td>0.0040 (0.0064)</td>
</tr>
</tbody>
</table>

* "Duplicate specific gravity results by the same operator should not be considered suspect unless they differ more than 0.02."

() - supplemental procedure for mixtures containing porous aggregate conditions ("dryback procedure").
<table>
<thead>
<tr>
<th>Designations</th>
<th>Description</th>
<th>Multilaboratory Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AASHTO</td>
</tr>
<tr>
<td>T228</td>
<td>Asphalt Cement Specific Gravity</td>
<td>0.0024</td>
</tr>
<tr>
<td>T85</td>
<td>Coarse Aggregate Specific Gravity</td>
<td>0.013</td>
</tr>
<tr>
<td>T84</td>
<td>Fine Aggregate Specific Gravity</td>
<td>0.023</td>
</tr>
<tr>
<td>T166</td>
<td>Bulk Specific Gravity of Compacted Bituminous Specimens</td>
<td>*</td>
</tr>
<tr>
<td>T209</td>
<td>Theoretical Maximum Specific Gravity of Bituminous Mixture</td>
<td>0.0064 (0.0193)</td>
</tr>
</tbody>
</table>

* - “Duplicate specific gravity results by the same operator should not be considered suspect unless they differ more than 0.02.”

() - supplemental procedure for mixtures containing porous aggregate conditions (“dryback procedure”).
Monte Carlo Simulation Process

- Develop Probability Distributions from Mix Design Property Means and ASTM One-Sigma Limits for Each Input Variable
 - eg.: G_{mb} and G_{mm}

- Repeatedly Sample the Input Distributions (G_{mb} and G_{mm}) and Calculate the Output Variable to Generate an Output Distribution
 - eg.: %AV
Monte Carlo Simulation

\[\%AV = 100 \times \frac{G_{mm} - G_{mb}}{G_{mm}} \]

\(G_{mm} \) and \(G_{mb} \) = inputs

\(\%AV \) = output
Summary Plots

%AV Output Distribution at 5.25% AC

%AV Output Distribution at 5.75% AC

%AV Output Distribution at 6.25% AC

%AV Output Distribution at 6.75% AC

-5%

-1SD

Mean

+1SD

+95%

%AV Output Distribution at 5.25% AC

%AV Output Distribution at 5.75% AC

%AV Output Distribution at 6.25% AC

%AV Output Distribution at 6.75% AC

Wednesday, March 5, 14
Within Laboratory Air Voids

- AV (%)
- Asphalt Content (%)

-5%, +1SD, Mean, +95%

0.7% AC

Wednesday, March 5, 14
Between Laboratory Air Voids

1.4% AC

Asphalt Content (%)
Summary and Conclusions

- “Acceptable” Variability Associated with the Measurement of the Properties Required to Determine HMA Volumetrics can Have a Significant Impact on Calculated Volumetric Properties
Summary and Conclusions

- Within Laboratory Test Method Variability May Lead to Differences in AV and VMA of $1.0^{\pm}\%$ for Any Given Mix Design

- These Differences Translate into Potential Differences of 0.7% in Optimum Asphalt Content Selection
Summary and Conclusions

- Between Laboratory Test Method Variability May Lead to Differences in AV and VMA of over 2.0% for Any Given Mix Design

- These Differences Translate into Potential Differences of Over 1.0% in Optimum Asphalt Content Selection
Outline

- Introduction
- Variability
- Sampling Variability
- Testing Variability
- Materials/Construction Variability
- Percent within Limit
Outline

- Introduction
- Variability
- Sampling Variability
- Testing Variability
- Materials/Construction Variability
- Percent within Limit
- Typical Variability
PWL and PD Concept

\[\text{PWL} = 100 - (\text{PD}_U + \text{PD}_L) \]

In Terms of Area of the Distribution

PWL and **PD**

\[\text{PWL} = 100 - (\text{PD}_U + \text{PD}_L) \]

In Terms of Area of the Distribution
Percent Within Limits

<table>
<thead>
<tr>
<th>Spec</th>
<th>Target Value</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.0</td>
<td>± 0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Asphalt Binder Content

Lower limit: 4.2
Target: 5.0
Upper limit: 5.8

Wednesday, March 5, 14
Percent Within Limits

Target Value | 5.0
Limits | ± 0.4

<table>
<thead>
<tr>
<th>Lot</th>
<th>X</th>
<th>s</th>
<th>PWL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.0</td>
<td>0.20</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>0.40</td>
<td>68</td>
</tr>
</tbody>
</table>

Asphalt Binder Content

Lot 1

Lower limit

Upper limit

Wednesday, March 5, 14
Percent Within Limits

<table>
<thead>
<tr>
<th>Spec</th>
<th>Target Value</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.0</td>
<td>± 0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Asphalt Binder Content

Lower limit

Upper limit

Lot 1

Lot 2

Target

Wednesday, March 5, 14
Percent within Limits

<table>
<thead>
<tr>
<th>Lot</th>
<th>X</th>
<th>s</th>
<th>PWL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.0</td>
<td>0.20</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>4.8</td>
<td>0.20</td>
<td>84</td>
</tr>
</tbody>
</table>

Target Value: 5.0
Limits: ± 0.4

Asphalt Binder Content

Lot 1
Upper limits

Lot 2
Lower limit

Wednesday, March 5, 14
Outline

- Introduction
- Variability
- Sampling Variability
- Testing Variability
- Materials/Construction Variability
- Percent within Limit
- Typical Variability
Typical Variability

<table>
<thead>
<tr>
<th>Property</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Content, %</td>
<td>0.25</td>
</tr>
<tr>
<td>% pass 4.75 mm, %</td>
<td>3.0</td>
</tr>
<tr>
<td>% pass 2.36 mm to 0.15</td>
<td>2.0</td>
</tr>
<tr>
<td>% pass 0.075 mm, %</td>
<td>0.7</td>
</tr>
<tr>
<td>Air Voids, %</td>
<td>1.0</td>
</tr>
<tr>
<td>VMA, %</td>
<td>1.5</td>
</tr>
<tr>
<td>VFA, %</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- Variability
- Sampling Variability
- Testing Variability
- Materials/Construction Variability
- Percent within Limit
- Typical Variability

Summary
Why Understand Testing Variability

- Provide quality product to our customer
- Remain in business
- Establish specification limits
- Predict pay factors
60 Asphalt Binder Contents

Frequency

- 16
- 14
- 12
- 10
- 8
- 6
- 4
- 2
- 0

4.3 %
4.5 %
4.7 %
4.9 %
5.1 %
Asphalt Content

f(x)
QC/QA and Variability

Variability = variability + variability + variability

(QC/QA) (sampling) (test method) (mat./const.)

\[S^2_{QC/QA} = S^2_s + S^2_t + S^2_{m/c} \]
Sampling

- Number of Samples and Size
- Sampling Location
 - Random
 - *Stratified Random
 - Systematic – uniform intervals
 - Quota – @ change in process
 - Judgment
- Sampling Method
- Acceptance OR Source Approval OR QC OR Independent Assurance/Verification of Test Procedures
Monte Carlo Simulation

\[\%AV = 100 \times \frac{G_{mm} - G_{mb}}{G_{mm}} \]

\(G_{mm} \) and \(G_{mb} \) = inputs

\(\%AV \) = output
PWL and PD Concept

PWL = 100 - (PD_U + PD_L)

In Terms of Area of the Distribution

Wednesday, March 5, 14
Typical Variability

<table>
<thead>
<tr>
<th>Property</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Content, %</td>
<td>0.25</td>
</tr>
<tr>
<td>% pass 4.75 mm, %</td>
<td>3.0</td>
</tr>
<tr>
<td>% pass 2.36 mm to 0.15</td>
<td>2.0</td>
</tr>
<tr>
<td>% pass 0.075 mm, %</td>
<td>0.7</td>
</tr>
<tr>
<td>Air Voids, %</td>
<td>1.0</td>
</tr>
<tr>
<td>VMA, %</td>
<td>1.5</td>
</tr>
<tr>
<td>VFA, %</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Questions?