Crack Surfacing

Rocky Mountain Asphalt Conference and Equipment Show
Denver, Colorado – February 25, 2010

Bruce Morgenstern, P.E.
Wyoming Department of Transportation

Sunday, March 28, 2010
Definition (what)

- Maintenance strategy (another tool)
 - Generic term; set apart from filler, sealant (less complex than micro surfacing)
 - As wide as 36-inch band

- Pre-manufactured material that is a homogeneous, blended mixture of binder and aggregate for repairing cracks, potholes, depressions, and utility cuts in existing asphalt pavement
 - Crafco PolyPatch, PolyPatch Fine Mix
 - Deery American Level & Go, Repair Mastic
Definition (what)

- **Binder**
 - (proprietary blend of asphalt, polymer, filler, etc) —

- Meets or exceeds
 - PG88-28
 - (rotational viscosity N/A)
 - DSR Torsion bar tests, temperature sweep 2002 (ATS RheoSystems)
 - GLWT, TSRST data (UW 2003-2005; MPC report)
Aggregate

- 3/8-inch max.
 - LA abrasion loss, 35% max.
 - Sand equivalent*, 45% min.
 - Plastic index*, NP
 - MgSO₄ Soundness loss, 18% max.

*(based on minus No. 4 [4.75 mm] fraction)
Background (why & where)

- Wide cracks (>1.5 inch)
 - Stone intrusion
 - Minimize waste of sealant (form factor, …)
- “Recessed”, deep cracks (hear / feel them)
 - Improve ride (decreased roughness)
 - Extend service life (seal against water)
- Plant Mix Base correlation
- Versatile for highways, airports (runways, taxiways, aprons), …
Application (when & how)

- Installation (all year)
 - Winter preferable (pavement temp. ≥40°F)
 - Cracks at widest (mat shrinkage)
 - Clean & Dry (pavement temp. ≥40°F)
- Melter / Applicator
 - Continuous agitation/mixing
 - Gravity feed chute discharge (internal augur)
 - 380° - 400°F
- Squeegee to shape/smooth (technique)
 - Mound slightly, cools down flat/level

Sunday, March 28, 2010
Application (when & how)

- Configuration(s) –
 - Flush
 - Recessed
Melter / Applicator
Melter / Applicator
Application (when & how)

- **Acceptance** –
 - Pay unit by volume; cubic foot (CF)
 - Measure by pound (LB)
 - Test for density (LB/CF); ASTM D71 WY Modified
 - Lot size; 900 CF
 - 3 to 5 sublots, 300 CF max. each
 - 1 field sample per subplot
 - two (2) boxes w/silicone release lining, 15 LB each box
 - Quantity ≤450 CF,
 by certification & one premixed sample
Projects (examples)

<table>
<thead>
<tr>
<th>Year</th>
<th>Location(s)</th>
<th>Quantity</th>
<th>Unit Bid Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>WY 93, MP 18.5 – 26.1 (first trial section)</td>
<td>24620 LB</td>
<td>1.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>WY 313, MP 116.8 – 121.8</td>
<td>62740 LB</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>WY 387, MP 100.0 – 102.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 26, MP 0.0 – 8.9</td>
<td>352 CF</td>
<td>110</td>
</tr>
<tr>
<td>2003</td>
<td>I 25, MP 69.0 – 75.3</td>
<td>455</td>
<td>169</td>
</tr>
<tr>
<td>2004</td>
<td>I 25, MP 51.6 – 58.5</td>
<td>235</td>
<td>169</td>
</tr>
<tr>
<td>2005</td>
<td>WY 59, MP 19.2 – 26.2</td>
<td>990</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>WY 93, MP 17.3 – 19.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Projects (examples)

<table>
<thead>
<tr>
<th>Year</th>
<th>Location(s)</th>
<th>Quantity (CF)</th>
<th>Unit Bid Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>I 25, MP 200.0 – 210.9 Cheyenne, Guernsey Airports</td>
<td>1840</td>
<td>127</td>
</tr>
<tr>
<td>2007</td>
<td>Buffalo Airport</td>
<td>16</td>
<td>103</td>
</tr>
<tr>
<td>2008</td>
<td>US 14, MP 193.6 – 200.1 US 85, MP 229.0 – 247.8 WY 112, MP 0.0 – 7.6</td>
<td>4170</td>
<td>133</td>
</tr>
<tr>
<td>2009</td>
<td>WY 270, MP 523.3 – 535.8 Big Piney, Rawlins Airports</td>
<td>3770</td>
<td>98</td>
</tr>
<tr>
<td>2010</td>
<td>US 20, MP 41.4 – 63.2 WY 313, MP 116.0 – 119.0</td>
<td>2350</td>
<td>102</td>
</tr>
</tbody>
</table>
Projects (examples)
Disadvantages –

- Workability (inelastic, very thick slurry)
- N/A for shallow, narrow cracks (<1.5”)
 - WY 313 lessons
 - Installation (finish surface; mounding)
 - Subsidence (underlying structure)
- Cracks will reflect back up through (stiffness)
Advantages –

- **Ride improvement**
 - Smoother, less annoying ride; less vehicle wear
 - IRI decreased by average 10%+
 - 15 inches per mile less after installation

- **Economical**
 - Less expensive than overlay, milling, leveling, etc.
 - Extend service life
 - Separating/splitting somewhat similar to crack sealant

- **Durability**
 - Greater than crack sealant (snowplow wear)
Advantages –

Field Performance

- Success with all products (vs. MPC report, lab testing)

Customer (WYDOT) feedback –

- Favorable
 - “holding up very well”
 - “works pretty good in the right situations”
 - “right tool for the right job”
 - “maintenance foreman like it”
Acknowledgements

- **University of Wyoming**
 - Steve Carter, Dr. Ksaibati, George Huntington
 - Mountain-Plains Consortium
 - (www.mountain-plains.org)
 - Evaluating the Effectiveness of Hot-Poured Crack Surfacing Material, *MPC Report No. 06-180* (March 2006, 121 pages)
Acknowledgements (cont’d)

- ATS RheoSystems
 - Steven Colo

- Wyoming DOT
 - Aeronautics Division
 - John Jordy, P.E., Greg Hampshire
 - District 2
 - Mark Williams, P.E. (Casper); Buck Klemola, P.E. (Torrington)
 - Materials Program
 - (ref: Mountain-Plains Consortium report)

- Suppliers
 - Crackfiller Mfgr - Lisa Zentner
 - Crafco - Lowell Parkison
 - Maxwell Products - Mike Diamond
Questions ?