Development and Application of the Asphalt Mix Performance Tester

Ramon Bonaquist, Ph.D., P.E

Advanced Asphalt Technologies, LLC
Outline

- What is the Asphalt Mixture Performance Tester?
- Why was it developed?
- What tests can be conducted?
- How can I use the data?
- What’s next?
What is the AMPT?

- NCHRP 9-29
- Servo-Hydraulic Machine
- HMA Testing
 - Mix Design
 - Structural Design
 - Evaluation
AMPT Capabilities

- Three Performance Related Tests
 - Dynamic Modulus
 - Repeated Load
 - Creep
- Temperature Control
 - 4 to 60 °C
- With and Without Confinement
 - 210 kPa Max
- Fatigue Test Under Development
Key AMPT Features

• Rugged
 – Proven Hydraulic System
• Automated Testing Cell
 – Temperature
 – Confining Pressure
• Easy to Install Instrumentation
• Standard Software
 – Testing and Analysis
 – Data Quality
• Technician Friendly
Why Do We Need the AMPT?

- Test to Indicate How a Mix Will Perform
 - Rutting
 - Cracking

- Uses
 - Identify Inferior Mixtures
 - Structural Design
 - Evaluations
SHRP Mixture Tests

- **Shear Test AASHTO TP7**
 - Modulus
 - Permanent Deformation
- **Flexural Fatigue AASHTO TP8**
 - Fatigue Cracking
- **Indirect Tensile Test AASHTO TP9**
 - Thermal Cracking
Issues With SHRP Products

• High Costs
 – Equipment
 – Training

• Used With Performance Models
 – Errors
 – Not Calibrated
 – Not User Friendly
Post SHRP

- National Cooperative Highway Research Program (NCHRP)
- Considered
 - Gyratory Compactor
 - Asphalt Pavement Analyzer
 - Fundamental Tests
Recommended Tests

• Dynamic Modulus
 – Rutting
 – Cracking

• Repeated Load Test
 – Rutting

• Creep Test
 – Rutting
Dynamic Modulus Test

- Rutting
 - Min $|E^*|$ at High Temp
- Fatigue Cracking
 - Max $|E^*|$ at Intermediate Temp

$|E^*| = \frac{\sigma_0}{\varepsilon_0}$
Repeated Load Test

- Rutting
 - Min FN at High Temp
Creep Test

- Rutting
 - Min FT at High Temp
SPT Uses

- Dynamic Modulus Master Curve for Structural Design
 - AASHTO MEPDG
- Mixture Design
 - NCHRP Project 9-33 “Mix Design Manual for Hot Mix Asphalt”
- Material Evaluations
 - Homogenity of RAP Mixtures
Pavement Structural Design

- AASHTO Mechanistic-Empirical Pavement Design Guide
 - HMA Characterized by a Dynamic Modulus Master Curve
 - Plant Aged Conditions
 - Modulus Needed
 - Stress-Strain Analysis
 - Rutting Model
 - Fatigue Cracking Model
Temperature and Loading Rate Effects

Dynamic Modulus, ksi

- 4 C
- 20 C
- 40 C

|E*| Master Curve

<table>
<thead>
<tr>
<th>Reduced Frequency, Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0001</td>
</tr>
</tbody>
</table>

Temperature, C

<table>
<thead>
<tr>
<th>Shift Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

Shift Factor vs Temperature, C
NCHRP 9-29 Draft Practice

• Developing Dynamic Modulus Master Curves for Hot-Mix Asphalt Concrete Using the Asphalt Mixture Performance Tester
 – Testing Conditions
 • Temperature
 • Frequency
 – Replicates
 – Data Analysis
 • Excel Spreadsheet
Rutting Resistance

Rutting Mechanism

• Shear Deformation - Major
• Densification - Minor
• High Temperatures
• Early in Pavement Life

2-3 in
NCHRP 9-33 Tentative Criteria

• Stress Level
 – 600 kPa (87 psi)
 – Database of Mixtures Tested by FHWA

• Temperature
 – 50 % Reliability Design Temperature From LTPPBind 3.1

• Short Testing Time
Mixture Homogenity

• How Well Does the RAP/RAS Binder Mix with the New Binder?
 – Black Rock
 – Complete Mixing

• Process Specific
 – Plant Type
 – Plant Operations
 – RAP/RAS Processing
One Tool

• Dynamic Modulus
 – Test Is Highly Sensitive to Binder Stiffness
 • Assess Degree of Mixing of New and Recycled Binders
 – Relatively Easy to Perform with the AMPT
How?

• Perform Dynamic Modulus Tests on Plant Produced Mixture
 – Plant Mixed Condition

• Recover Binder, Test and Estimate Dynamic Modulus Using Predictive Model
 – Fully Blended Condition

• Compare Measured and Estimated
Good Mixing

Dynamic Modulus, ksi

Testing Condition

- 4 C, 10 Hz
- 4 C, 1 Hz
- 4 C, 0.1 Hz
- 20 C, 10 Hz
- 20 C, 1 Hz
- 20 C, 0.1 Hz
- 40 C, 10 Hz
- 40 C, 1 Hz
- 40 C, 0.1 Hz

Measured
Estimated for Complete Mixing
Poor Mixing

Testing Condition

Dynamic Modulus, ksi

- Measured
- Estimated for Complete Mixing

Conditions:
- 4 °C, 10 Hz
- 4 °C, 1 Hz
- 4 °C, 0.1 Hz
- 20 °C, 10 Hz
- 20 °C, 1 Hz
- 20 °C, 0.1 Hz
- 40 °C, 10 Hz
- 40 °C, 1 Hz
- 40 °C, 0.1 Hz

Advanced Asphalt Technologies, LLC
"Engineering Services for the Asphalt Industry"
Implementation

• Interlaboratory Study
 – NCHRP 9-29

• Pooled Fund Study 5(178)
 – Purchase Equipment for Interested Agencies
 – 2 Day Training Course
 – Coordinated Studies
 • Improve Criteria
AMPT Summary

• Specifically for HMA Testing
• Three Performance Related Tests
 – Dynamic Modulus
 – Repeated Load
 – Creep
 – Fatigue Test Under Development
• User Friendly, Second Generation Mixture Performance Testing Equipment
• Extensive National Efforts to Develop and Implement
AMPT Uses

- Dynamic Modulus Master Curve for Structural Design
 - AASHTO MEPDG

- Mixture Design
 - NCHRP Project 9-33 “Mix Design Manual for Hot Mix Asphalt”

- Material Evaluations
 - Homogenity of RAP Mixtures
 - Forensics
 - Others
Questions

Ramon Bonaquist, P.E.
Chief Operating Officer
Advanced Asphalt Technologies
108 Powers Court, Suite 100
Sterling, VA 20166
703-444-4200
aatt@erols.com