Alternative Paving Binders

Gayle King

Rocky Mountain Asphalt Conference

February 26, 2010
Mission Statement:

Create a flexible pavement binder which:

- is derived from sustainable renewable resources
- enables the paving industry to achieve a negative carbon footprint (net reduction of atmospheric CO$_2$)
- yields safe and economical high-performance pavements under all traffic and climatic conditions.
- can be constructed, maintained, and recycled with minimal disruptions to traffic.
- enables all existing environmental health and safety standards to be met and exceeded.
Define sustainable?

- **Annual asphalt use worldwide**
 - Approximately 100 million tons

- **Annual worldwide production of lipid grain oils** (Soy, Palm, Rape, Sunflower – not Corn Oil)
 - Approximately 100 million tons
 - Paving Products: Ecopave, Activate, Replay, ..

- **Find new land with fresh water**
 - South American rain forests
 - Rain forests on Pete (release CH$_4$) – High CO$_{2e}$
 - United Nations report defines issues for fuels

Grain oil as a raw material is not sustainable!
Guiding Principles for Research:

Sustainable Sources of Raw Materials

- Biomass sources which preferably do not use land or fresh water resources now producing food.
 - Cellulosic biomass
 - Algae
 - Other fast growing biological species

- Prefer direct sourcing of raw materials rather than using by-products from other fuels technologies (e.g. lignin, pyrolysis pitch).

- Prefer Lipid Oils rather than sugars
Biomaterials

The Chemical Essentials

- **Sugars**
 - Simple to complex: glucose, starch, cellulose
 - Fermented to ethanol (or butanol) using enzymes
 - Yeast for glucose and starch
 - Biosources: sugar cane, fruit, corn, potatoes, cellulose
 - Biodegrade: attacked by common bacteria

- **Lipid Oils**
 - Fats and fatty acids, waxes, sterols, cholesterol, monoglycerides, diglycerides, phospholipids
 - Biosources: Soybeans, rapeseed, sunflower, palm, algae, bacteria
 - Bio-products: Biodiesel; Jet Fuel; Bio-Binders
Guiding Principles for Research

Competitive life-cycle costs

Assumptions:

- Petroleum reserves will decrease and refinery coking capacity will increase
 - reduced AC supply
 - gradually increasing AC prices

- Synthetic binders will add value
 - Reduced damage from moisture and oxidation
 - Stronger, thinner, more flexible pavements

- Cap & Trade policy will provide economic incentive through carbon credits
Guiding Principles for Research

Targeted Products

- **Flexible Paving Binder**
 - Replace asphalt as the primary paving material.

- **Asphalt Extender**
 - Extend asphalt and improve performance

- **Rejuvenating agent for use with RAP**
 - Restore asphalt quality in aged pavements

- **Special uses**
 - Pavement Preservation, including cold applications
 - Fuel-resistant sealers for airfield pavements
Guiding Principles for Research

Pavement Serviceability

- **Design & Construction**
 - Can current HMA technology be used?

- **Maintenance & Recyclability**
 - Materials: Cold applications to replace emulsions

- **Environmental, Health, & Safety**
 - Pavement Safety: Friction
 - Worker Safety: Fumes, H$_2$S

- **Performance over time**
 - Aging/Oxidation
 - Sensitivity to moisture: stripping or degradation
Guiding Principles for Research

Evaluating Performance

- **Alternative Paving Binder**
 - Binder Characterization
 - Mix Design
 - Mixture Performance Testing
 - Accelerated Loading
 - Structural Design

- **Pavement Preservation**
 - Alternatives for cold/emulsion applications

- **Roofing**
Guiding Principles for Research

Focus on Education

- Professor Training
- Teacher Training
- Internet Training
- Enrichment programs for elementary and HS students
Paving Binders Through Molecular Engineering

Emerging Bio-technologies

- **Algal Biomass**
 - Convert lipid oil to viscous liquid or resin – Biospan, Colas
 - Fischer-Tropsch conversion of methane – SASOL, Shell
 - Anaerobic Digestion
 - Grow algae that excrete methane
 - Thermal Conversion to create gas/liquid/solid:

- **Cellulosic Biomass**
 - Thermal conversion
 - Fast Pyrolysis
 - Hydrothermal Liquefaction
 - Cellulose fermentation – Use lignin by-product

- **Bacteria**
Paving Binders Through Molecular Engineering

Why Algae?

- **Voracious appetite for CO₂**
 - Sequester CO₂ at coal utilities & cement plants

- **Grows in salt water**
 - Concentrates can be shipped via pipeline

- **Grows in desert climates with constant sun**
 - Ideal temperature: 70°F

- **Nutrients:**
 - Preferred nutrient source is sewage sludge: N, K, P

- **Algae strains produce different lipids**

- **Estimated Oil Production: 2000 Gal/acre**
 - Forty times more than soybeans (48 gal/acre)
Paving Binders Through Molecular Engineering

Algae – Where are we now?

- **Bio-jet from algae**: DOD, Boeing, Continental

- **Bio-fuels from algae**
 - Ames labs
 - AlgaeLink – Netherlands firm
 - Joint Venture: Exxon & Synthetic Genomics

- **NASA**: Grow algae in off-shore sewage bags

- **Algal Biomass Organization**: Website, Seminars
 - promotes the development of viable commercial markets for renewable and sustainable commodities derived from algae.

- **Oilgae**: Detailed website & commercial report

Sunday, March 28, 2010
Paving Binders Through Molecular Engineering

Algae-Phalt Pavements

- **Grow the right algae**
 - Genetic engineering for oil quality and yield
 - Enclosed production systems (NASA)

- **Recover oil from living algae**
 - Filter, dry, and extract with hexane
 - Grow Algae with magnetite – separate magnetically
 - Engineered Algae secrete oil or methane (Exxon JV)
 - Sponge-like mesoporous nanoparticles extract oil (Ames)

- **Convert algal lipids to paving binder**
 - Chemistry, Processing with Catalysts

- **Evaluate performance of paving materials**
Algae: Technology Limitations

- Oil quantity and type vary with algae species
 - No specificity for the chemistry of product oils
 - “Infect” open ponds with wrong algae

- Recovery of algal oil
 - Drying and extraction is very expensive
 - Host algae killed by the recovery process
 - Ultrasound avoids drying step; difficult scale-up
 - Genetic engineering: oil-secreting algae escape!

- No known conversion processes for paving
Paving Binders Through Molecular Engineering

Algae to Methane to Binder

- **Produce Methane from Algae**
 - Anaerobic Digestion (Auburn)
 - Algae produce methane directly
 - Gas by-product of thermal conversion

- **Fischer-Tropsch conversion to high molecular weight hydrocarbons – Sasol**
 - Sasobit by-products are solid wax-like branched alkanes used as asphalt warm mix additives
Paving Binders Through Molecular Engineering

Thermal Conversion of Biomass

- **Thermal Conversion processes**
 - Fast Pyrolysis (Williams – ISU)
 - Hydrothermal Liquefaction

- **Raw material**
 - Cellulosic Biomass
 - Algal Biomass
 - Lignin as by-product of cellulose fermentation

- **Products**
 - Cracked oils
 - Gases
 - Lignin and other heavy solid-like bottoms
Fermentation of Biomass

- Fermentation of complex sugars
 - Ethanol from cellulose (WRI)

- Raw material for bio-binder
 - Lignin

- Conversion options for lignin
 - Thermal: Fast pyrolysis, Hydrothermal Liquefaction
 - Chemical
Research Objectives: Laboratory Scale

Create a synthetic paving binder

- **From Algal Biomass:**
 - Conversion of algal oil/lipids, including possible synthesis of bio-polymers (BIOSPAN)
 - Fischer-Tropsch conversion of methane (SASOL)
 - Use of gas/liquid/solid products of thermal conversion

- **From Cellulosic Biomass:**
 - Use of thermal conversion products
 - Conversion of lignin: chemical or thermal
 - Conversion of ethanol or other bio-fuels
Research Objectives: Laboratory Scale

Evaluate Grain-oil Based Synthetic Binders

- Measure binder properties
- Evaluate paving applications appropriate to binder rheology
 - Standard HMA mixes
 - RAP blending agents
 - Pavement Preservation, including emulsion
- Determine fit with current design criteria and construction practices

Sunday, March 28, 2010
NCAT search: $$$ & team for Applied Research

- Identify & isolate the preferred biomass feedstock
 - Genetic engineering

- Recover bio-oil/gas efficiently
 - Nano-farming

- **Convert biomaterials to paving binder**
 - Basic chemistry
 - Processing technology: pilot; full-scale

- Adapt & validate paving technology

- Education
Questions?

If Americans could put a man on the moon in a decade, we have the ingenuity to solve the energy crisis. Obama